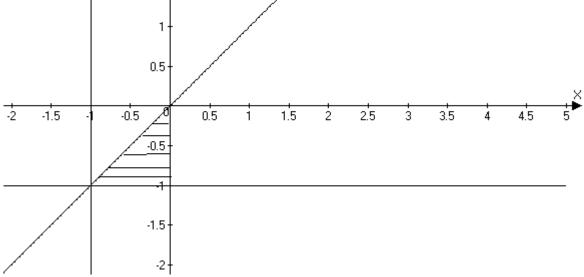
Вариант №6


Задача №1

Вычислить двойной интеграл $\iint_D f(x,y) dx dy$ от функции f(x,y) по заданной области D:

$$D = \{(x,y) | -1 \le x \le 0, -1 \le y \le x\}, \ f(x,y) = y^2 e^{xy}.$$

Решение

Вид области D представлен на рисунке

Представим двойной интеграл через повторный:

$$\iint_{D} f(x,y) dx dy = \int_{-1}^{0} dy \int_{-1}^{y} y^{2} e^{xy} dx = \int_{-1}^{0} y^{2} dy \int_{-1}^{y} e^{xy} dx =$$

$$= \int_{-1}^{0} y^{2} dy \frac{1}{y} e^{xy} \Big|_{-1}^{y} = \int_{-1}^{0} y \left(e^{y^{2}} - e^{-y} \right) dy = \int_{-1}^{0} \left(y e^{y^{2}} - y e^{-y} \right) dy =$$

$$= \left[\int_{-1}^{y e^{-y}} dy = \begin{cases} u = y, du = dy, \\ dv = e^{-y} dy, \\ v = \int_{0}^{e^{-y}} dy = e^{-y} \end{cases} = -y e^{-y} + \int_{0}^{e^{-y}} e^{-y} dy =$$

$$= \left[\int_{0}^{1} e^{y^{2}} - e^{-y} \left(y + 1 \right) \right]_{-1}^{0} = \frac{1}{2} e^{0} - e^{0} \left(0 + 1 \right) - \frac{1}{2} e^{(-1)^{2}} + e^{-(-1)} \left(-1 + 1 \right) =$$

$$= \frac{1}{2} - 1 - \frac{1}{2} e^{-y} - \frac{1}{2} e^{-y} - \frac{1}{2} e^{-y} = -\frac{1}{2} e^{-y} - \frac{1}{2} e^{-y} = -\frac{1}{2} e^{-y} - \frac{1}{2} e$$

Вычислить объём тела G с помощью кратного интеграла, используя подходящую замену переменных:

$$G = \left\{ (x, y, z) \middle| \frac{3\sqrt{2}}{2} \le z \le \sqrt{9 - x^2 - y^2} \right\}.$$

$$V = \iiint_{V} dV = \left\{ \begin{aligned} x &= \rho \cos \varphi \\ y &= \rho \sin \varphi \end{aligned} \right\} = \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi} \rho d\rho \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} dz = \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi} \rho \left(\sqrt{9 - \rho^2} - \frac{3\sqrt{2}}{2} \right) d\rho =$$

$$= -\frac{1}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi} \left(\sqrt{9 - \rho^2} \right) d(9 - \rho^2) - \frac{3\sqrt{2}}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi} \rho d\rho =$$

$$= -\frac{1}{2} \int_{0}^{2\pi} \left(\frac{2}{3} \sqrt{(9 - \rho^2)^3} \right) \int_{0}^{3\pi} d\varphi - \frac{3\sqrt{2}}{2} \int_{0}^{2\pi} \left(\frac{\rho^2}{2} \right) \int_{0}^{3\pi} d\varphi =$$

$$= -\frac{1}{2} \int_{0}^{2\pi} \left(\frac{2}{3} \sqrt{(9 - \theta^2)^3} - \frac{2}{3} \sqrt{9^3} \right) d\varphi - \frac{3\sqrt{2}}{2} \int_{0}^{2\pi} \left(\frac{9}{2} \right) d\varphi = -\frac{1}{2} \int_{0}^{2\pi} (-18) d\varphi - \frac{3\sqrt{2}}{2} \int_{0}^{2\pi} \left(\frac{9}{2} \right) d\varphi =$$

$$= 9 * 2\pi - \frac{27\pi\sqrt{2}}{2} = \left(18 - \frac{27\sqrt{2}}{2} \right) \pi$$

Задача №3

Вычислить криволинейный интеграл I рода по плоской кривой Γ :

 \int_{Γ}^{xyds} , Γ – четверть окружности $x^2 + y^2 = 1$, лежащая в первом квадранте.

Решение. Рассматривая х как параметр, получаем:

$$y = \sqrt{1 - x^{2}}, y' = \frac{-x}{\sqrt{1 - x^{2}}},$$

$$\sqrt{1 + y'^{2}} = \sqrt{1 + \left(\frac{-x}{\sqrt{1 - x^{2}}}\right)^{2}} = \sqrt{\frac{1 - x^{2} + x^{2}}{1 - x^{2}}} = \frac{1}{\sqrt{1 - x^{2}}},$$

$$\int_{\Gamma} xy ds = \int_{0}^{1} x \sqrt{1 - x^{2}} \frac{1}{\sqrt{1 - x^{2}}} dx = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}.$$

Задача №4

Вычислить криволинейный интеграл по меньшей дуге единичной окружности, заключённой между точками A и B и ориентированной в направлении от точки A к точке B:

$$\int_{AB} x^2 dy, \ A\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \ B\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

Решение: Зададим уравнение дуги AB единичной окружности параметрически: $x = \cos t$, $y = \sin t$, $t \in \left(\frac{\pi}{4}, \frac{7\pi}{4}\right)$.

Ориентация дуги AB при этом будет удовлетворять условию задачи. Тогда по формуле вычисления криволинейного интеграла 2-рода имеем:

$$\int_{AB} x^2 dy = \int_{\pi/4}^{7\pi/4} \cos^2 t \cos t dt = \int_{\pi/4}^{7\pi/4} (1 - \sin^2 t) \cos t dt =$$

$$= \int_{\pi/4}^{7\pi/4} (1 - \sin^2 t) d(\sin t) = \left(\sin t - \frac{\sin^3 t}{3} \right) \Big|_{\pi/4}^{7\pi/4} = -\sqrt{2} - \sqrt{2} + \sqrt{2} = -\sqrt{2}$$

Задача №5

Вычислить криволинейный интеграл по окружности $C = \{(x,y) | x^2 + y^2 = 1\}$, ориентированной по часовой стрелке:

$$\iint_C (y + e^x) dx + y e^{-y} dy.$$

Решение

По формуле Грина, которая в данной задаче применима, т.к. кривая C кусочно-гладкая, а функции $P=y+e^x$ и $Q=ye^{-y}$ — непрерывны вместе с частными производными $\frac{\partial P}{\partial y}=1$ и $\frac{\partial Q}{\partial x}=0$ в замкнутом круге $D: x^2+y^2 \le 1$ [1], имеем:

$$I = \iint_{C} (y + e^{x}) dx + y e^{-y} dy = -\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

знак «—» перед двойным интегралом объясняется тем, что формула Грина верна при положительной ориентации границы области D, что в нашей задаче совпадает с ориентацией окружности C против часовой стрелки, а по условию надо подсчитать значение интеграла при противоположной ориентации окружности.

$$I=-\iint\limits_{D}\left(rac{\partial Q}{\partial x}-rac{\partial P}{\partial y}
ight)dxdy=-\iint\limits_{D}(0-1)dxdy=\iint\limits_{D}dxdy=\pi$$
 — площадь единичного круга.

Вычислить поверхностный интеграл 2 рода по внутренней стороне сферы $S = \{(x,y,z) | x^2 + y^2 + z^2 = 4\}$:

$$\iint\limits_{S} (2xy^2 + 2/3x^3) dy dz.$$

Решение

По формуле, задающей связь между поверхностным интегралами первого и второго рода [1], имеем:

$$I = \iint_{S} xy \cos \alpha ds,$$

где $\cos \alpha$ – косинус угла между единичной нормалью к сфере в заданной её точке и осью OX . По свойству сферы в нашей задаче $\cos \alpha = -x$, тогда

$$I = -\iint_{S} (2xy^{2} + 2/3x^{3})xds = -\iint_{S} (2x^{2}y^{2} + 2/3x^{2})ds =$$

$$= -2\iint_{D_{zy}} (2x^{2}y^{2} + 2/3x^{2})\sqrt{1 + \frac{y^{2}}{4 - y^{2} - z^{2}}} dzdy =$$

$$= -2\iint_{D_{zy}} (2x^{2}y^{2} + 2/3x^{2})\sqrt{1 + \frac{y^{2}}{4 - y^{2} - z^{2}}} + \frac{z^{2}}{4 - y^{2} - z^{2}} dzdy =$$

$$= -4\iint_{D_{zy}} (2x^{2}y^{2} + 2/3x^{2})\sqrt{\frac{1}{1 - y^{2} - z^{2}}} dzdy =$$

$$= -4\iint_{D_{zy}} (2x^{2}y^{2} + 2/3x^{2})\sqrt{\frac{1}{1 - y^{2} - z^{2}}} dzdy,$$

где $x^2=4$ - y^2 - z^2 - уравнение сферы, $D_{zy}=\left\{(z,y)\big|\,z^2+y^2\leq 4\right\}$ - проекция двух полусфер $x=\sqrt{4$ - z^2 - y^2 и $x=-\sqrt{4$ - z^2 - y^2 на плоскость YOZ .

Тогда

$$I = -4 \iint_{y^2 + z^2} \frac{3(4 - z^2 - y^2)^2 y^2 + 1}{3\sqrt{(4 - z^2 - y^2)^3}} dydz =$$

$$= -4 \iint_{y^2 + z^2} \left[y^2 \sqrt{4 - z^2 - y^2} + \frac{1}{3\sqrt{(4 - z^2 - y^2)^3}} \right] dydz =$$

$$= -4 \iint_{-1} dz \int_{-\sqrt{1 - z^2}}^{\sqrt{1 - z^2}} \left[y^2 \sqrt{4 - z^2 - y^2} + \frac{1}{3\sqrt{(4 - z^2 - y^2)^3}} \right] dy =$$

$$= -4 \iint_{-1} \left[\frac{1}{8} (z^4 - 8z^2 + 16) \arcsin \frac{y}{4 - z^2} + \sqrt{4 - z^2 - y^2} (yz^2 + 2y^3 - 4y) - \frac{y}{\sqrt{4 - z^2 - y^2} (3z^2 - 12)} \right]_{-\sqrt{1 - z^2}}^{\sqrt{1 - z^2}} dz =$$

е С другой стороны можно применить формулу Остроградского-Гаусса:

$$I = -\iiint_G \frac{\partial}{\partial x} ((2xy^2 + 2/3x^3)) dx dy dz = -\iiint_G \left(2y^2 - \frac{2}{x^4}\right) dx dy dz =$$

$$= -\iint_D \left(2y^2 - \frac{2}{x^4}\right) dx dy \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} dz = -4\iint_D \left(2y^2 - \frac{2}{x^4}\right) \sqrt{4-x^2-y^2} dx dy$$

$$\text{где } G = \left\{(x,y,z) \middle| x^2 + y^2 + z^2 \le 4\right\} - \text{шар радиуса 2},$$

$$D = \left\{(x,y) \middle| x^2 + y^2 \le 4\right\} - \text{проекция шара на плоскость } XOY.$$

Последний интеграл совпадет с рассмотренным выше с точностью до обозначения переменных и, следовательно, также равен нулю.

Задача №7

Найти общее решение дифференциального уравнения:

$$(x^2 + y^2)dx + (2xy - e^y)dy = 0.$$

Решение:

$$(x^{2} + y^{2})dx + (2xy - e^{y})dy = 0,$$

$$P(x,y) = x^{2} + y^{2}, Q(x,y) = 2xy - e^{y},$$

$$\frac{dP}{dy} = 2y, \frac{dQ}{dx} = 2y, \Rightarrow \frac{dP}{dy} = \frac{dQ}{dx},$$

Имеем уравнение в полных дифференциалах, находим:

$$U(x,y) = \int (2xy - e^y) dy = xy^2 - e^y + \phi(x),$$

$$\frac{dU(x,y)}{dx} = y^2 + \phi'(x) = x^2 + y^2, \phi'(x) = x^2,$$

$$\phi = \frac{x^3}{3} + C, \Rightarrow U(x,y) = xy^2 - e^y + \frac{x^3}{3} + C.$$

Задача №8

Найти решение дифференциального уравнения, удовлетворяющего начальному условию y(1) = 1 : $xy' - y + 2xy^2 \ln x = 0$.

Решение:

$$xy' - y + 2xy^{2} \ln x = 0,$$

$$y' - \frac{y}{x} = -2xy \ln x,$$

$$y = uv, y' = u'v + uv', \Rightarrow$$

$$u'v + uv' - \frac{uv}{x} = -2xuv \ln x,$$

$$u'v + u \left(v' - \frac{v}{x}\right) = -2xuv \ln x,$$

$$v' - \frac{v}{x} = 0, \frac{dv}{dx} = \frac{v}{x}, \frac{dv}{v} = \frac{dx}{x}, \int \frac{dv}{v} = \int \frac{dx}{x},$$

$$\ln v = \ln x, v = x, \Rightarrow$$

$$u'x = -2xux \ln x, u' = -2xu \ln x,$$

$$\frac{du}{dx} = -2xu \ln x, \frac{du}{dx} = -2x \ln x dx, \int \frac{du}{dx} = -2 \int x \ln x dx,$$

$$\int x \ln x dx = \begin{bmatrix} u = \ln x, du = \frac{dx}{x}, \\ dv = x dx, v = \int x dx = \frac{x^2}{2} \end{bmatrix} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{dx}{x} = \frac{x^2}{2} \ln x - \int \frac{x}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C,$$

$$\ln u = -2 \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} + C \right), u = e^{-2 \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} + C \right)}, y = uv = e^{-2 \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} + C \right)},$$

$$y(1) = 1, \Rightarrow 1 = 1 \cdot e^{-2 \left(\frac{1^2}{2} \ln 1 - \frac{1^2}{4} + C \right)}, 1 = e^{\frac{1}{2} - 2C}, e^0 = e^{\frac{1}{2} - 2C}, \Rightarrow$$

$$0 = \frac{1}{2} - 2C, C = \frac{1}{4}, y = xe^{\frac{x^2}{2} \ln x - \frac{x^2}{4} + \frac{1}{4}}.$$

Решить задачу Коши:

$$4yy'' + y^2 + yy'^4 = 0$$
, $y(1) = 1$, $y'(1) = -1$.

Решение:

Уравнение не зависит от переменной x. Поэтому можно понизить порядок уравнения заменой y'(x) = p(y(x)), тогда y'' = p'p.

$$4ypp'+p^2+yp^4=0,$$
 $p'+\frac{p^2}{4yp}+\frac{yp^4}{4yp}=0,$
 $p'+\frac{p}{4v}=-\frac{p^3}{4},-ypashehue Бернулли$

Решение будем искать в виде:

$$p' = u'v + v'u;$$

$$u'v + v'u + \frac{uv}{4y} = -\frac{(uv)^3}{4};$$

$$\left(u' + \frac{u}{4y}\right)v + v'u = -\frac{(uv)^3}{4};$$

$$\begin{cases} u' + \frac{u}{4y} = 0 \\ v'u = -\frac{(uv)^3}{4} \end{cases}$$

$$u' + \frac{u}{4y} = 0$$

$$\frac{du}{u} = -\frac{dy}{4y}$$

$$\ln|u| = -\frac{1}{4}\ln|y| + \ln|C|, C \in \mathbb{R} \setminus \{0\}$$

$$u = \frac{C}{4\sqrt{y}};$$

$$C = 1;$$

$$u = \frac{1}{4\sqrt{y}};$$

$$\frac{v'}{\sqrt{y}} = -\frac{v^3}{4\sqrt[4]{y}};$$

$$-\frac{1}{2v^2} = -\frac{\sqrt{y}}{2} - \frac{C}{2};$$

$$\frac{1}{v^2} = \sqrt{y} + C;$$

$$v = \pm \frac{1}{\sqrt{\sqrt{y} + C}};$$

$$y' = \pm \frac{1}{\sqrt[4]{y}\sqrt{\sqrt{y} + C}};$$

$$y' = \pm \frac{1}{\sqrt[4]{y}\sqrt{\sqrt{y} + C}};$$

$$y'(1) = \pm \frac{1}{\sqrt[4]{y}\sqrt{\sqrt{y} + C}} \Rightarrow -\frac{1}{\sqrt{1 + C}} = -1;$$

$$1 + C = 1;$$

$$C = 0;$$

$$y' = -\frac{1}{\sqrt{y}};$$

$$\sqrt{y}dy = -dx$$

$$\frac{2}{3}\sqrt{y^3} = -x + C;$$

$$y = \sqrt[3]{9(C - x)^2}$$

$$4$$

$$y = \sqrt[3]{9(C - x)^2}$$

$$4$$

$$y(1) = \sqrt[3]{\frac{9(C-1)^2}{4}} = 1$$

$$\frac{9(C-1)^2}{4} = 1$$

$$(C-1)^2 = \frac{4}{9}$$

$$C-1 = \frac{2}{3};$$

$$C = \frac{5}{3};$$

$$y = \sqrt[3]{\frac{9(\frac{5}{3} - x)^2}{4}} = \sqrt[3]{\frac{(5-3x)^2}{4}}$$

Найти общее действительное решение однородного дифференциального уравнения: $y^{IV} + y'' = 0$.

Решение:

Характеристическое уравнение:

$$r^{4} + r^{2} = 0,$$

 $r^{2} (r^{2} + 1) = 0, r_{1,2} = 0, r_{3,4} = -i,$

Общее решение однородного уравнения:

$$y_{00} = C_1 e^{0x} + C_2 x e^{0x} + C_3 \operatorname{Re}(e^{ix}) + C_4 \operatorname{Im}(e^{ix})$$

Т.к. $Re(e^{ix}) = \cos x$, $Im(e^{ix}) = \sin x$, то общее действительное решение имеет вид: $y_{00} = C_1 e^{0x} + C_2 x e^{0x} + C_3 \cos x + C_4 \sin x$

Задача №11

Два датчика посылают сигнал в общий канал связи, причем первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искаженный сигнал от первого датчика равна 0,06, от второго – 0,03. Какова вероятность получить искаженный сигнал в общем канале?

Решение:

Пусть x — количество сигналов второго датчика, 2ч-количество сигналов первого датчика, тогда:

P(A/H1)=0,01 - вероятность получить искаженный сигнал от 1 P(A/H2)=0,03 - вероятность получить искаженный сигнал от 2 P(H1)=2x/3x=2/3

$$P(H2)=1x/3x=1/3$$

По формуле полной вероятности, получаем:

$$P(A) = P(A/H1) * P(H1) + P(A/H2) * P(H2) =$$

$$=0,06 \cdot \frac{2}{3} + 0,03 \cdot \frac{1}{3} = 0,05$$

Задача №12

Семена содержат 0,1% сорняков. Оценить вероятность того, что при случайном отборе 10000 семян будет найдено от 10 до 13 сорняков.

Решение:

Применение локальной теоремы Лапласа, из-за малой вероятности p=0,001, приводит к значительному отклонению вероятности от точного значения $P_n(k)$. Поэтому применяю асимптотическую формулу Пуассона:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \lambda = np$$

Эта формула используется при $\lambda \le 10$. Чем меньше р и больше п, тем точнее результат. По условию задачи: p=0,001, n=10000, k_1 =10, k_2 =13. Тогда $\lambda = 10000 \cdot 0,001 = 10$,

$$P_{10000} (10 \le k \le 13) = P_{10000} (k = 10) + P_{10000} (k = 11) + P_{10000} (k = 12) + P_{10000} (k = 13) = \frac{10^{10} e^{-10}}{10!} + \frac{10^{11} e^{-10}}{11!} + \frac{10^{12} e^{-10}}{12!} + \frac{10^{13} e^{-10}}{13!} = 0,1338 + 0,1217 + 0,1014 + 0,078 = 0,4349$$

Задача №13

Случайная величина X может принимать только два значения x_1 и x_2 , причём $x_1 < x_2$. Известны вероятность p_1 возможного значения x_1 , математическое ожидание M(X) и дисперсия D(X). Найти закон (ряд) распределения этой случайной величины.

$$p_1 = \frac{36}{37}, D(X) = 4, M(X) = 2.$$

Решение

Сумма вероятностей всех возможных значений дискретной случайной величины должна быть равна единице, поэтому вероятность p_2 того, что X примет значение x_2 равна:

$$p_2 = 1 - \frac{36}{37} = \frac{1}{37}$$
.

Тогда закон распределения X:

$$X \qquad X_1 \qquad X_2$$

P	36	1
		
	37	37

По определению:

$$M(X) = p_1 x_1 + p_2 x_2 = \frac{36}{37} x_1 + \frac{1}{37} x_2 = 2;$$

$$D(X) = M(X^2) - (M(X))^2.$$

Найдём $M(X^2) = \frac{36}{37}x_1^2 + \frac{1}{37}x_2^2 = 4$,

тогда
$$D(X) = \frac{36}{37}x_1^2 + \frac{1}{37}x_2^2 - 2^2 = 4$$
.

Имеем систему уравнений для нахождения x_1 и x_2 :

$$\begin{cases} \frac{36}{37}x_1 + \frac{1}{37}x_2 = 2\\ \frac{36}{37}x_1^2 + \frac{1}{37}x_2^2 = 8 \end{cases}$$

Решая систему, найдём: $x_1 = \frac{7}{3}$, $x_2 = 0$ и $x_1 = \frac{5}{3}$, $x_2 = 14$. По условию

 $x_1 < x_2$, поэтому первое решение не подходит. Тогда закон распределения дискретной случайной величины имеет вид:

X	$\frac{5}{3}$	14
P	36 37	<u>1</u> 37

Задача №14

Случайная величина X задана функцией распределения F(x), требуется:

- 1) найти плотность вероятности;
- 2) математическое ожидание и дисперсию X;
- 3) построить графики функции распределения и функции плотности распределения.

$$F(x) = \begin{cases} 0, & \text{при } x \le 0 \\ x^2 / 25, & \text{при } 0 < x \le 5. \\ 1, & \text{при } x > 5 \end{cases}$$

Решение

Найдём плотность распределения. По определению:

$$f(x) = F'(x) = \begin{cases} 0, & \text{при } x \le 0 \\ \frac{2}{25}x, & \text{при } 0 < x \le 5 \\ 0, & \text{при } x > 5 \end{cases}$$

Тогда

$$M(X) = \int_{0}^{5} xf(x)dx = \int_{0}^{5} x \frac{2}{25} x dx = \frac{2}{25} \int_{0}^{5} x^{2} dx = \frac{2}{75} x^{3} \Big|_{0}^{5} = \frac{2}{75} 5^{3} = \frac{15}{3}$$

$$D(X) = \int_{0}^{5} x^{2} f(x) dx - M^{2}(x) = \frac{2}{25} \int_{0}^{5} x^{3} dx = \frac{2}{100} x^{4} \Big|_{0}^{5} = \frac{2}{100} \cdot 625 = \frac{25}{2}$$

График функции распределения представлен на рисунке а)

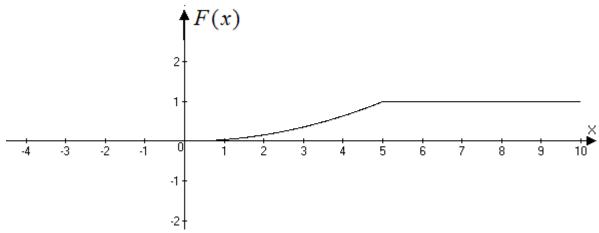


Рисунок а

График функции плотности распределения представлен на рисунке б).

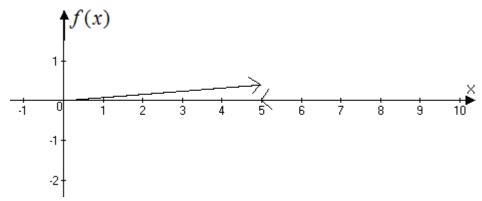


Рисунок б

Заданы математическое ожидание M(X) и средне квадратическое отклонение σ нормально распределённой величины X. Найти: 1) вероятность того, что X примет значение, принадлежащие интервалу (α,β) ; 2) вероятность того, что абсолютная величина отклонения X - M(X) окажется меньше δ .

$$M(X) = 21$$
, $\sigma = 16$, $\alpha = 10$, $\beta = 20$, $\delta = 8$.

Решение

1) Воспользуемся формулой:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right),$$

подставив a = 21, $\sigma = 16$, $\alpha = 10$, $\beta = 20$, получим:

$$P(10 < X < 20) = \Phi(1,1) - \Phi(0,1)$$

По таблицам приложения находим $\Phi(1,1)=0,3643$; $\Phi(0,1)=0,0398$. Тогда искомая вероятность равна:

$$P(10 < X < 20) \approx 0.3643 - 0.0398 = 0.3245$$

2) Искомая вероятность находится по формуле:

$$P(|X - M(X)| < \delta) = 2\Phi(\frac{\delta}{\sigma}).$$

По условию M(X) = 21, $\sigma = 16$, $\delta = 8$. Следовательно:

$$P(|X-21|<2)=2\Phi(\frac{8}{16})=2\Phi(0,5)\approx 2.0,1915=0,383.$$

Задача №16

Провести исследование генеральной совокупности, используя выборочные данные соответствующего варианта.

1) Построить статистическое распределение выборки и гистограмму частот (шаг h указан в варианте).

- 2) Дать точечные оценки генеральному среднему и дисперсии.
- 3) Предполагая, что выборка сделана из нормальной совокупности, построить доверительные интервалы для математического ожидания и дисперсии нормального распределения, приняв доверительную вероятность $\gamma=0.95$.
- 4) При уровне значимости α =0,01 проверить гипотезу о нормальности генеральной совокупности, используя критерий согласия Пирсона [9].

Выб	орка о	бъёма	N=23	37, нач	ало пе	рвого і	интерва	ала a	=285,	шаг h	=7.
324	296	313	323	312	321	322	301	337	322	329	307
301	328	312	318	327	315	319	317	309	334	323	340
326	322	314	335	313	322	319	325	312	300	323	335
339	326	298	298	337	322	303	314	315	310	316	321
312	315	331	322	321	336	328	315	338	318	327	323
325	314	297	303	322	314	317	330	318	320	312	333
332	319	325	319	307	305	316	330	318	335	327	321
332	288	322	334	295	318	329	305	310	304	326	319
317	316	316	307	309	309	328	317	317	322	316	304
303	350	309	327	345	329	338	311	316	324	310	306
308	302	315	314	343	320	304	310	345	312	330	324
308	326	313	320	328	309	306	306	308	324	312	309
324	321	313	330	330	315	320	313	302	295	337	346
327	320	307	305	323	331	345	315	318	331	322	315
304	324	317	322	312	314	308	303	333	321	312	323
317	288	317	327	292	316	322	319	313	328	313	309
329	313	334	314	320	301	329	319	332	316	300	300
304	306	314	323	318	337	325	321	322	288	313	314
307	329	302	300	316	321	315	323	331	318	334	316
328	294	288	312	312	315	321	332	319			

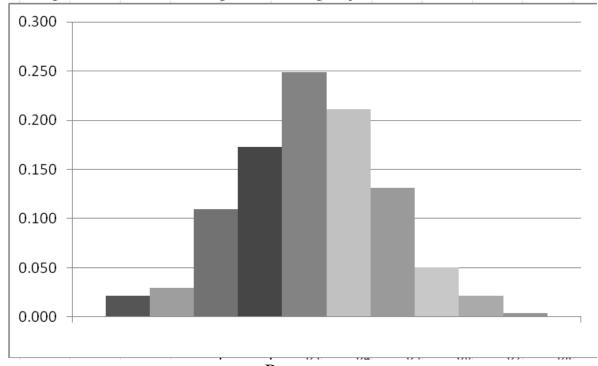
Решение

1. Упорядочив данные x_i выборки по возрастанию, и найдя соответствующие частоты n_i встречающихся значений, получим таблицу, задающую статистическое распределение выборки:

n _i 4 1 1 2 1 1 2 4 3 3 303 304 305 306 307 308 309 310 311 312 4 5 3 4 5 4 7 4 1 11 313 314 315 316 317 318 319 320 321 322 9 9 10 10 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345											
303 304 305 306 307 308 309 310 311 312 4 5 3 4 5 4 7 4 1 11 313 314 315 316 317 318 319 320 321 322 9 9 9 10 10 8 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350		288	292	294	295	296	297	298	300	301	302
4 5 3 4 5 4 7 4 1 11 313 314 315 316 317 318 319 320 321 322 9 9 10 10 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3	n_i	4	1	1	2	1	1	2	4	3	3
4 5 3 4 5 4 7 4 1 11 313 314 315 316 317 318 319 320 321 322 9 9 10 10 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3											
313 314 315 316 317 318 319 320 321 322 9 9 9 10 10 8 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350		303	304	305	306	307	308	309	310	311	312
9 9 10 10 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350 3		4	5	3	4	5	4	7	4	1	11
9 9 10 10 8 8 8 6 9 13 323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350 3											
323 324 325 326 327 328 329 330 331 332 8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350		313	314	315	316	317	318	319	320	321	322
8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350		9	9	10	10	8	8	8	6	9	13
8 6 4 4 6 6 6 5 4 4 333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350											
333 334 335 336 337 338 339 340 343 345 2 4 3 1 4 2 1 1 1 3 346 350		323	324	325	326	327	328	329	330	331	332
2 4 3 1 4 2 1 1 1 3 346 350		8	6	4	4	6	6	6	5	4	4
2 4 3 1 4 2 1 1 1 3 346 350											
346 350		333	334	335	336	337	338	339	340	343	345
		2	4	3	1	4	2	1	1	1	3
1 1		346	350								
		1	1								

$$n = \sum_{i=1}^{k} n_i = 237 - \text{объём выборки.}$$

Разобьём интервал данных на 10 частичных интервала длины h=7: 285-292; 292-299; 299-306; 306-313; 313-320; 320-327; 327-334; 334-341; 341-348; 348-355, и найдём новые частоты n_i , приняв в качестве их значений сумму частот данных выборки, попавших в i-ый интервал. Итак:


$$n_1 = 4 + 1 = 5$$
; $n_2 = 1 + 2 + 1 + 1 + 2 = 7$; $n_3 = 4 + 3 + 3 + 4 + 5 + 3 + 4 = 26$; $n_4 = 5 + 4 + 7 + 4 + 1 + 11 + 9 = 41$, $n_5 = 9 + 10 + 10 + 8 + 8 + 8 + 6 = 59$, $n_6 = 9 + 13 + 8 + 6 + 4 + 4 + 6 = 50$, $n_7 = 6 + 6 + 5 + 4 + 4 + 2 + 4 = 31$, $n_8 = 3 + 1 + 4 + 2 + 1 + 1 = 12$, $n_9 = 1 + 3 + 1 = 5$, $n_{10} = 1$

Вычислим плотности частот n_i/n и построим таблицу распределения выборки для построения гистограммы частот:

(x_i, x_{i+1})	$(285; \bar{2}92)$	(292;299)	(299;306)	(306;313)
$\overline{n_i}$	5	7	26	41
$\overline{n_i/n}$	0,021	0,03	0,11	0,173
(313, 320)	(320;327)	(327;334)	(334;341)	(341;348)
59	50	31	12	5
0,249	0,211	0,131	0,051	0,021

$$\frac{(348,355)}{1}$$
0,004

Гистограмма частот изображена на рисунке:

Рисунок

2. Приняв в качестве новых вариант y_i серединные значения частичных интервалов (x_i, x_{i+1}) , построим распределение равноотстоящих вариант для вычисления точечных оценок генеральной средней и дисперсии методом произведений.

y_i	n,
288.5	5
295.5	7
302.5	26
309.5	41
316.5	59
323.5	50
330.5	31
337.5	12
344.5	5
351.5	1

Напомним процедуру вычисления оценок генеральной средней и дисперсии по методу произведений.

Выберем
$$C = \frac{1}{2}(y_1 + y_{10}) = \frac{1}{2}(288, 5 + 351, 5) = 320.$$

Вычислим $u_i = (y_i - C)/h -$ условные варианты.

Найдём $M_1^* = (\sum n_i u_i)/n$ — условный момент первого порядка,

 $M_{2}^{*} = (\sum n_{i}u_{i}^{2})/n$ — условный момент второго порядка.

Тогда:

$$\overline{y}_{_{\theta}} = M_{_{1}}^{*}h + C - \text{выборочная средняя},$$

$$D_{_{\theta}} = (M_{_{2}}^{*} - (M_{_{1}}^{*})^{2})h^{2} - \text{выборочная дисперсия}.$$

Результаты вычислений сведём в таблицу:

y_i	n,	u_{i}	$n_i u_i$	$n_i u_i^2$	$n_i(u_i+1)^2$
288.5	5	-4.5	-22.5	101.25	61.25
295.5	7	-3.5	-24.5	85.75	43.75
302.5	26	-2.5	-65	162.5	58.5
309.5	41	-1.5	-61.5	92.25	10.25
316.5	59	-0.5	-29.5	14.75	14.75
323.5	50	0.5	25	12.5	112.5
330.5	31	1.5	46.5	69.75	193.75
337.5	12	2.5	30	75	147
344.5	5	3.5	17.5	61.25	101.25
351.5	1	4.5	4.5	20.25	30.25
	237		-79.5	695.25	615.75

$$M_{1}^{*} = (\sum n_{i}u_{i})/n \approx -0.34; M_{2}^{*} = (\sum n_{i}u_{i}^{2})/n \approx 2.93;$$

$$\overline{y}_{e} = M_{1}^{*}h + C = -0.34 \cdot 7 + 320 = 313.34;$$

$$D_{e} = (M_{2}^{*} - (M_{1}^{*})^{2})h^{2} = (2.93 - (-0.34)^{2}) \cdot 49 = 137.9056.$$

$$\sigma_{e} = \sqrt{D_{e}} \approx 11.74.$$

3. Для получения интервальной оценки математического ожидания a нормально распределённой случайной величины по выборочной средней x_a и неизвестной дисперсии используем формулу:

$$\overline{x}_{\scriptscriptstyle g} - t_{\scriptscriptstyle y}(S/\sqrt{n}) < a < \overline{x}_{\scriptscriptstyle g} + t_{\scriptscriptstyle y}(S/\sqrt{n}),$$

где S – «исправленное» выборочное средне квадратическое отклонение, $t_{_{\mathcal{Y}}}$ – случайная величина распределённая по закону Стьюдента с числом степеней свободы k=n - 1 (находится по таблице при заданных n и \mathcal{Y}).

Найдём S.

Имеем
$$S^2 = \frac{n}{n-1}D_{\scriptscriptstyle 6}' = \frac{237}{236} \cdot 137,9056 \approx 138,49$$
.

Отсюда $S=\sqrt{S^2}=\sqrt{138,49}\approx 11,77$. При $\gamma=0,95$ и n=237 имеем $t_{\gamma}=1,96$ и $t_{\gamma}(S/\sqrt{n})=1,96\cdot (11,77/\sqrt{237})=1,498$. Тогда доверительный интервал для математического ожидания равен:

$$(313,34 - 1,498;313,34 + 1,498) = (311,842;314,838)$$

Для получения интервальной оценки дисперсии нормальной генеральной совокупности используют случайную величину $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$. Величина χ^2 имеет распределение Пирсона с числом степеней свободы k=n-1 и представлена в таблицах. По этим таблицам определяются два числа (критические точки распределения χ^2) u_1 и u_2 :

$$P(\chi^2 > u_1) = \alpha_1 = \frac{1+\gamma}{2}, k = n-1;$$

 $P(\chi^2 < u_2) = \alpha_2 = \frac{1-\gamma}{2}, k = n-1.$

Замечание Если число степеней свободы k > 30, то критическую точку $u(\alpha, k)$ можно найти из равенства Уилсона-Гильферти:

$$u(\alpha,k) = k \left[1 - \frac{2}{9k} + z_{\alpha} \sqrt{\frac{2}{9k}} \right]^3,$$

где z_{α} находят из равенства $\Phi(z_{\alpha})$ =(1 - 2α)/2, используя функцию Лапласа.

Тогда доверительный интервал для дисперсии можно записать в виде:

$$\frac{(n-1)S^2}{u_2} < \sigma^2 < \frac{(n-1)S^2}{u_1}.$$

В нашей задаче по условию $\gamma = 0.01$. Тогда, $\alpha_1 = \frac{1+0.95}{2} = 0.975$;

$$\alpha_2 = \frac{1 - 0.95}{2} = 0.025; k = 237 - 1 = 236.$$

Так как в нашем случае k=236>30 используем равенство Уилсона-Гильферти для нахождения u_1 и u_2 :

$$\alpha_1 = 0.975$$
; $\frac{1 - 2\alpha_1}{2} = 0.5 - 0.975 = -0.475$;

из равенства $\Phi(z_{\alpha_1})$ =- 0,475 находим z_{α_1} =- 1,96. Тогда:

$$u_1 = 236 \cdot \left(1 - \frac{2}{9 \cdot 236} - 1,96\sqrt{\frac{2}{9 \cdot 236}}\right)^3 \approx 195,43.$$

Аналогично:

$$\alpha_2 = 0.025$$
; $\frac{1 - 2\alpha_2}{2} = 0.5 - 0.025 = 0.475$;

из равенства $\Phi(z_{\alpha_2}) = 0,475$ находим $z_{\alpha_2} = 1,96$. Тогда:

$$u_2 = 236 \cdot \left(1 - \frac{2}{9 \cdot 236} + 1,96\sqrt{\frac{2}{9 \cdot 236}}\right)^3 \approx 221,62;$$

$$\frac{(n-1)S^2}{u_2} = \frac{236 \cdot 313,34}{221,62} \approx 333,67; \frac{(n-1)S^2}{u_1} = \frac{236 \cdot 313,34}{195,43} = 378,39.$$

Таким образом, доверительный интервал для дисперсии: (333,67;378,39)

4. Считаем, что эмпирическое распределение задано в виде последовательности интервалов $(x_i; x_{i+1})$ и соответствующих им частот:

(x_i, x_{i+1})	$(285;292)^{-1}$	(292;299)	(299;306)	(306;313)
$\overline{n_i}$	5	7	26	41
(212 220)	(220, 227)	(227.224)	(224.241)	(241.240)
(313,320)	(320;327)	(327;334)	(334;341)	(341;348)
59	50	31	12	5

Перейдём к новой случайной величине: $z=(x-\overline{x}_e)/\sigma_e$ и вычислим концы интервалов $z_i=(x_i-\overline{x}_e)/\sigma_e$, полагая $z_1=-\infty$, $z_{10}=+\infty$, $z_2=(292$ - 313,34)/11,74=-1,82; $z_3=(299$ - 313,34)/11,74=-1,22; $z_4=(306$ - 313,34)/11,74=-0,63, $z_5=(313$ - 313,34)/11,74=-0,03, $z_6=(320$ - 313,34)/11,74=0,57, $z_7=(327$ - 313,34)/11,74=1,16, $z_8=(334$ - 313,34)/11,74=1,76, $z_9=(341$ - 313,34)/11,74=2,36,

$$z_9 = (348 - 313,34)/11,74 = 2,95$$

Найдём теоретические вероятности попадания случайной величины X в интервал (x_i, x_{i+1}) $P_i = \Phi(z_{i+1})$ - $\Phi(z_i)$, здесь $\Phi(z)$ - функция Лапласа.

$$\begin{split} P_1 &= \Phi(-1,82) - \Phi(-\infty) = \Phi(+\infty) - \Phi(1,82) = 0,5 - 0,4656 = 0,0344; \\ P_2 &= \Phi(-1,22) - \Phi(-1,82) = \Phi(1,82) - \Phi(1,22) = 0,4656 - 0,3883 = 0,0773; \\ P_3 &= \Phi(-0,63) - \Phi(-1,22) = \Phi(1,22) + \Phi(0,63) = 0,3883 + 0,2357 = 0,1526; \\ P_4 &= \Phi(0,63) - \Phi(0,03) = 0,2357 - 0,012 = 0,2237 \\ P_5 &= \Phi(0,57) - \Phi(0,03) = 0,2157 + 0,012 = 0,2277 \\ P_6 &= \Phi(1,16) - \Phi(0,57) = 0,377 - 0,2157 = 0,1613 \\ P_7 &= \Phi(1,76) - \Phi(1,16) = 0,4608 - 0,377 = 0,0838 \\ P_8 &= \Phi(2,36) - \Phi(1,76) = 0,4909 - 0,4608 = 0,0301 \\ P_9 &= \Phi(2,95) - \Phi(2,36) = 0,4984 - 0,4909 = 0,0075 \\ P_{10} &= 0,5 - \Phi(2,95) = 0,5 - 0,4984 = 0,0016 \end{split}$$

Проверка: $\sum P_i = 1$.

Вычислим теоретические частоты $n_{i}' = n_{i}P_{i}$:

$$n'_1 = 237 \cdot 0.0344 = 8.1528$$
; $n'_2 = 237 \cdot 0.0773 = 18.3202$; $n'_3 = 237 \cdot 0.1526 = 36.1662$; $n'_4 = 237 \cdot 0.2237 = 53.0169$, $n'_5 = 237 \cdot 0.2277 = 53.9649$, $n'_6 = 237 \cdot 0.1613 = 38.2281$, $n'_7 = 237 \cdot 0.0838 = 19.8606$, $n'_8 = 237 \cdot 0.0301 = 7.1337$, $n'_9 = 237 \cdot 0.0075 = 1.7775$, $n'_{10} = 237 \cdot 0.0016 = 0.3792$.

Найдём
$$\sum_{i=1}^{10} (n_i - n_i')^2 / n_i' = 34,32$$

nį	n'_i	$(n_i - n')^2 / n'$
5	8.1528	1.22
7	18.3202	6.99
26	36.1662	2.86
41	53.0169	2.72
59	53.9649	0.47
50	38.2281	3.63
31	19.8606	6.25
12	7.1337	3.32
5	1.7775	5.84
1	0.3792	1.02
		34.32

По таблице критических точек распределения χ^2 , по заданному уровню значимости $\alpha=0,01$ и числу степеней свободы k=s-3=10-3=7, (где s – число интервалов выборки) находим критическую точку правосторонней критической области: $\chi^2_{\rm kp}=18,5$. Так как $\chi^2_{\rm hadd}>\chi^2_{\rm kp}$, то гипотезу о нормальном распределении генеральной совокупности отвергаем.